Populations of Solutions of the Xxx Bethe Equations Associated to Kac-moody Algebras

نویسنده

  • E. MUKHIN
چکیده

We consider the XXX Bethe equation associated with integral dominant weights of a Kac-Moody algebra and introduce a generating procedure constructing new solutions starting from a given one. The family of all solutions constructed from a given one is called a population. We list properties of populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The two parameter quantum groups‎ ‎$U_{r,s}(mathfrak{g})$ associated to generalized Kac-Moody algebra‎ ‎and their equitable presentation

We construct a family of two parameter quantum grou-\ps‎ ‎$U_{r,s}(mathfrak{g})$ associated with a generalized Kac-Moody‎ ‎algebra corresponding to symmetrizable admissible Borcherds Cartan‎ ‎matrix‎. ‎We also construct the $textbf{A}$-form $U_{textbf{A}}$ and‎ ‎the classical limit of $U_{r,s}(mathfrak{g})$‎. ‎Furthermore‎, ‎we‎ ‎display the equitable presentation for a subalgebra‎ ‎$U_{r...

متن کامل

Lie Symmetries, Kac-Moody-Virasoro Algebras and Integrability of Certain (2+1)-Dimensional Nonlinear Evolution Equations

In this paper we study Lie symmetries, Kac-Moody-Virasoro algebras, similarity reductions and particular solutions of two different recently introduced (2+1)-dimensional nonlinear evolution equations, namely (i) (2+1)-dimensional breaking soliton equation and (ii) (2+1)-dimensional nonlinear Schrödinger type equation introduced by Zakharov and studied later by Strachan. Interestingly our studie...

متن کامل

Lie algebras, Fuchsian differential equations and CFT correlation functions

Affine Kac-Moody algebras give rise to interesting systems of differential equations, so-called Knizhnik-Zamolodchikov equations. The monodromy properties of their solutions can be encoded in the structure of a modular tensor category on (a subcategory of) the representation category of the affine Lie algebra. We discuss the relation between these solutions and physical correlation functions in...

متن کامل

Polyhedral Realization of the Highest Weight Crystals for Generalized Kac-moody Algebras

In this paper, we give a polyhedral realization of the highest weight crystals B(λ) associated with the highest weight modules V (λ) for the generalized Kac-Moody algebras. As applications, we give explicit descriptions of crystals for the generalized Kac-Moody algebras of ranks 2, 3, and Monster algebras.

متن کامل

Lectures on Kac-Moody Algebras with Applications in (Super-)Gravity

These lectures are divided into two main parts. In the first part we give an introduction to the theory of Kac-Moody algebras directed towards physicists. In particular, we describe the subclasses of affine and Lorentzian Kac-Moody algebras in detail. Our treatment focuses on the Chevalley-Serre presentation, and emphasizes the importance of the Weyl group. We illustrate the basic theory with s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002